
Modeling Multibody Systems with ROBOTRAN

www.robotran.be

July 3, 2024

Contents

1 Introduction 3

2 Definitions, Conventions and Notations 5

2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Frames, vectors and tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Bodies characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Joints characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 One degree of freedom joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Joint modeling hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Skewed joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Multibody reference configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Forces and Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Multibody Formalisms 11

3.1 Dynamics of Tree-like Multibody Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Dynamics of Constrained Multibody Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Dynamic and constraint equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Index reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Generation of loop constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Special Features 18

4.1 Driven variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Joint forces and torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 External forces and torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Link forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Sensor kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.6 Algebraic constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Constitutive differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Analysis Modules 24

5.1 Coordinate partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Static equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.2 Non-sensitive variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.3 Exchange of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



5.3.4 Extra variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.5 Dynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 Eigensystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.2 Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Inverse Dynamics Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.1 Unconstrained MBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.2 Constrained MBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Constraints solution (at position level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A Link forces in vehicles problem 32

B Linearization and Modal analysis for multiphysic models 34

2



1 Introduction

The generation of the kinematic and dynamic equations of multibody systems (MBS) like mechanisms,

vehicles, robots, human body, satellites, etc. (Fig. 1) can be quite tedious both because of the size and the

complexity of the underlying mathematical models.

Set of articulated

rigid bodies

Mechanisms
Road vehicles

Railway vehicles

Robot manipulators
Space applications

t

y

Figure 1: Multibody applications.

Among the possible options to generate the multibody equations (kinematic, dynamic), the symbolic

approach, which appeared in the eighties, is a powerful tool to drastically simplify mathematical expressions

and to confer the equations a high portability towards other scientific disciplines like control, optimization,

dimensioning, etc. For that purpose, the ROBOTRAN environment was developed at UCL-MEED, according

to Fig. 2. Starting from a graphical description of the MBS (with the MBsysPAD graphical editor), the MBS

equations can be generated – in a few milliseconds – by the symbolic translator MBsysTran1 in MATLAB

, PYTHON or C syntax; these symbolic equations are then automatically interfaced with the simulator

(MBsysLab and MbsysC). 3D animation of the virtual system can then be performed via the MBsysPad

editor.

Figure 2: The ROBOTRAN program (e.g., c-code implementation).

1This symbolic generator was historically named ROBOTRAN : this acronym ROBOTRAN presently refers to the full

modeling environment.
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About this document The purpose of this text is really to invite the ROBOTRAN user to ”read before

acting”. Indeed, roughly speaking, in terms of ”skills”, a multibody program is not like a text-processor,

a minimum of knowledge about the underlying conventions, terminology and theory is indispensable before

starting to draw the simplest multibody system, e.g., the one-body pendulum! In addition to this document,

a more in-depth theoretical presentation can be found in the book [1] which underlies the ROBOTRAN

program or in publication [2].

In Section 2, the conventions and notations used in ROBOTRAN are introduced. Then in Section 3, the

dynamic formalisms for unconstrained and constrained MBS are presented while Section 4 focuses on some

specific modeling features. Finally, Section 5 describes the different type of analysis that can be carried out

on a MBS.
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2 Definitions, Conventions and Notations

2.1 Topology

A general multibody system is a mechanical system composed of n rigid bodies connected by joints.

A tree-like structure (Figure 3a), in which there are no loops of bodies, is always used to describe the

topology of the system, i.e., the way the bodies are connected. Serial robots or cranes are examples of tree-

like multibody systems. Each time a closed-loop of bodies is present in the system, a particular procedure

will be used to restore a temporary tree-like structure by either cutting a body into two parts or by cutting

a joint (Figure 3b). Parallel robots, vehicle multi-link suspensions, four-bar and slider-crank mechanisms are

examples of closed-loop multibody systems.

The topological vector inbody is defined as the vector whose ith element contains the index of the parent of

body i (see the example of figure 3a).

inbody = [0 1 2 2 2 4 4 0]

0

8 1

2

5
3

4

6 7

(a) Tree-like structure

inbody = [0 1 2 2 4 5 6 1 4 9]

0

joint
cut

body
cut

1

2

3

10

94

56

8

7

(b) Closed-loop structure

Figure 3: System topology.

2.2 Frames, vectors and tensors

As shown in Figure 4, an orthogonal right-handed body-frame {X̂i} is rigidly attached to each body i and

located at its center of mass CMi. It is generally simpler to choose this frame in such a way that its axes

correspond to the principal inertia axes of the body, but this is not indispensable. Also shown in Figure 4 is

{Î}, the inertial frame attached to the base body 0. Before listing the necessary model data, let us introduce

the following notations to define vectors and tensors.

A vector a is described in a given body frame {X̂i} by its three components ax, ay, az:

a =ax X̂
i
x + ay X̂

i
y + az X̂

i
z (1)

Writing the frame {X̂i} under the form of a 3 × 1 column matrix of unit vectors:

[X̂i]
∆
=

 X̂i
x

X̂i
y

X̂i
z

 (2)
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and applying classical matrix multiplication rules, we can write any vector a in the following concise

form:

a =[X̂i]t a where a
∆
= (ax ay az)

t (3)

Where the superscript t denotes the transpose of the matrix. The same notation holds for a tensor T of

order 2 (ex: the inertia tensor of a body with respect to its center of mass):

T =[X̂i]t T [X̂i] with T =

 Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 (4)

2.3 Bodies characterization

In Fig. 4, a body i is represented as well as its – unique – parent body h and its ”children” bodies j and k.

By convention, a joint which precedes a body in the structure has the same index as this body (see joints i,

j and k in Fig. 4). For any joint i, two reference anchor points are defined: the first one, Oi, on the parent

body h and the second one, O′i, on the body i.

The following quantities are introduced for describing each body i (i = 1 : n):

• dj=[X̂i]t dj , the joint vector which locates on body i the connection point Oj of joint j with respect

to the connection point O′i of joint i. Body i being rigid, the components of dj are constant in the

{X̂i} frame. Such a vector is defined for each of the children j, k, ... of body i (see Figure 4);

• li=[X̂i]t li, the position vector of the center of mass CM i of body i with respect to the connection

point O′i of joint i. The components of li are constant in the {X̂i} frame;

• mi, the mass of body i;

• Ii = [X̂i]t Ii [X̂i], the symmetric inertia tensor of body i with respect to its center of mass CM i. Its

components are constant in the {X̂i} frame.

{Î}

{X̂i}

Oj

O′j

Ok

Ok
Oi

O′i

mi, Ii

dk

dj

frci

trqj

CM i

li

g

{Î}

child
body, j

parent
body, h

child
body, k

body i

Figure 4: Body characterization.

In ROBOTRAN , the center of mass and the different anchor points of the body are defined with respect

to the joint anchor point (O′i in Figure 4) and in the same basis as the {X̂i} frame.
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2.4 Joints characterization

Joints between bodies represent devices such as telescopic arms, hinges, universal joints, ball joints, etc. as

shown in the examples of Fig. 5.

1 d.o.f.

1 d.o.f. 2-1=1 d.o.f.

2 d.o.f.

Figure 5: Example of joints.

Relative motions which occur in these joints are described in ROBOTRAN by relative generalized coor-

dinates q and their time derivatives q̇ and q̈. The absolute configuration of the MBS is computed in terms

of these relative coordinates and time derivatives.

2.4.1 One degree of freedom joints

In order to avoid the description of a large database of joints, it is assumed in ROBOTRAN that joints have

only one degree of freedom, either prismatic (denoted ”T”) or revolute (denoted ”R”) as depicted in Figure

6. Each joint j is assumed to be massless and connects body j to its parent i at anchor reference points,

O′j , Oj respectively, as already mentioned. These points2 are distinct for a prismatic joint but has been

arbitrarily chosen identical for a revolute joint (Figure 6).

Let us introduce the joint unit vector êj aligned with the joint axis according to Figure 6.

In joint j, the generalized coordinate qj represents:

• a relative displacement if j is prismatic (units = [m]) such that
−−−−→
Oj O′j = qj êj (qj is positive in Fig. 6a).

• a relative angle if j is revolute (units = [rad]), which characterizes the rotation along the unit vector

êj of body frame {X̂j} with respect to parent body frame {X̂i}. The sign of the angle is dictated by

the corkscrew rule applied to body j with respect to body i along êj .

qj

êji

Oj O′j

j

(a) Prismatic joint

êji j

Oj = O′j

qj

(b) Revolute joint

Figure 6: Elementary joints.

2which can be arbitrarily chosen on the joint axis for dynamic calculations purposes.
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More elaborate joints (spherical, universal, or even a general 6 d.o.f. joint) can be straightforwardly

modeled as a succession of these 2 elementary joints and so-called fictitious bodies as shown in the example

of Fig. 7 which refers to the 2 d.o.f. universal joint of Fig. 5. Fictitious bodies have no dimension nor mass

but they are numbered and they possess a body-fixed frame, exactly as for the real bodies. For instance,

in order to confer 6 d.o.f. to a vehicle chassis, six joints – three prismatic and three revolute successively –

will be inserted between the base (body 0) and the chassis (body 6), with five intermediate fictitious bodies

(1...5)3.

fictitious body

Figure 7: Modeling of a 2 d.o.f. universal joint.

2.4.2 Joint modeling hypothesis

To avoid more than one frame per body, the following convention is adopted in ROBOTRAN , related to the

joint direction:

• The axis of any (prismatic or revolute) joint i must be aligned with one of the axis directions (x, y or

z) of the frame attached to body i and to its parent body h (= inbody(i)) (Figure 9). The unit joint

vector êi is such that, at any time:

êi = X̂i
x = X̂h

x or êi = X̂i
y = X̂h

y or êi = X̂i
z = X̂h

z (5)

for a joint aligned with the x, y, z direction respectively.

2.4.3 Skewed joints

Although the previous hypothesis related to the joint directions could seem restrictive, this is not really the

case because if a joint is ”skewed” in the real system4, it can nevertheless be simply modeled by introducing

intermediate artificial joints (and fictitious massless bodies) which will be locked to a constant value during

the simulation, as illustrated in Fig. 8. In this example, the axis of a revolute joint i (qi) in the real system

(Fig. 8a) forms a constant angle α with respect to the {x, z} plane of the parent body frame {X̂h} along
the X̂h

x unit vector. Inserting a fictitious body i and a revolute joint (qi =α) solves the problem (Fig. 8b).

Indeed:

• the ROBOTRAN reference configuration (Figure 9 of section 2.5) is obtained for qi = 0,

• the presence of this constant angle α in the real system will be taken into account in the numerical

analysis by considering this joint as being driven (see Section 4.1 for more details) and then locked to a

constant value, i.e.: qi =α, q̇i = q̈i = 0 ∀ t. During the numerical analysis, the corresponding equation

of motion will simply be disregarded.

3these fictitious bodies do not need to be added in the graphical editor and are handled internally by the generator.
4Ex.: the handlebars steering of a bicycle
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i

{X̂h}
{X̂i}

α

qi

h

x
y

z

x

y

z

(a) real system

i

qi = α

qj

[X̂i]

{X̂h}
h

j

{X̂j}

x

y

zx
y

z

(b) model

Figure 8: Modeling of a skewed joint.

2.5 Multibody reference configuration

We can now define a very important notion for modeling MBS with ROBOTRAN : the reference configuration

of the tree-like5 system defined as follows (Figure 9):

• All6 body-fixed frames {X̂i} are aligned with the inertial frame {Î}

• All the generalized coordinates are equal to zero: qi = 0 ,∀ joint i, revolute and prismatic.

{X̂1}

{Î} = {X̂0}

{X̂2}

{X̂3}

{X̂4}

Figure 9: Multibody system - reference configuration with all frames aligned (qi = 0 ∀i).

ROBOTRAN : Bodies and joints (topology, type, shapes) are graphically sketched by the user in the

MBsysPad editor in the MBS reference configuration. Numerical data are also introduced there (masses,

inertia, vector components, etc.). Closed-loop systems must be converted into tree-like structures by suitable

loop cuts, also introduced in the MBsysPad editor.

5always required and thus restored for closed-loop systems
6being fictitious or not!
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2.6 Forces and Torques

As regards forces and torques acting on body i, we split them into three categories:

1. The gravitational force is considered separately in the formalism. This force is computed from the

gravity vector g whose three components g are provided in the inertial frame {Î} for obvious reasons:

g =[̂I]t g (Figure 4).

2. The joint forces/torques, which act on a body via its parent and children joint connections. Their

contribution to the equations of motion – denoted Qi for joint i – will be detailed in Section 4.2.

3. The external forces/torques: besides joint forces and gravity, all other forces and torques are considered

as external to the MBS and gathered together, for each body i, into a resultant force vector frci and

a resultant torque vector trqi with respect to the body center of mass CM i. Section 4.3 will present

them in more details.

In addition to these three categories and for practical reasons, we have introduced the so-called ”link forces”,

which are very useful in practice; A link force represents a force that acts between two materials points of

the MBS. Being not associated with any joint, the link force is considered by ROBOTRAN as two ”action-

reaction” external forces (i.e., belonging to the third category), while being internal to the system. Section

4.4 will present them in more details.
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3 Multibody Formalisms

3.1 Dynamics of Tree-like Multibody Systems

In this section, formalisms for tree-like unconstrained MBS are proposed. Since constrained systems (i.e.,

containing loops of bodies) are modeled in ROBOTRAN by first restoring a tree-like structure as mentioned

in Section 2.1, those formalisms are necessary for any kind of MBS.

Various multibody formalisms can be used to derive the equations of motion for a multibody system

(ex. based on a virtual principle, the Lagrange equations or the standard Newton/Euler laws formulated

recursively, ...). The equations describing the dynamics can be generated in the following semi-explicit form

in terms of the generalized accelerations. The semi-explicit formulation is also referred as the direct dynamics

model in the literature.

M(q, δ)q̈ + c(q, q̇, δ, frc, trq, g) = Q(q, q̇) (6)

In the previous equations:

• M [n ∗ n] is the symmetric generalized mass matrix of the system,

• c [n ∗ 1] is the nonlinear dynamic vector which contains the gyroscopic, centrifugal and gravity terms

as well as the contribution of external resultant forces, frc and torques, trq,

• q [n ∗ 1] denotes the relative generalized coordinates,

• δ [10n ∗ 1] gathers together the dynamic parameters of the system (body masses mi, centers of mass

(the three components of vectors li) and the inertia matrices with respect to the center of mass (the

six components of tensors li in the body-fixed frame)),

• Q [n ∗ 1] represents the generalized joint forces (torques).

Furthermore, the equations of motions can be expressed in a more compact form when expressions of the

mass matrix and the accelerations are not explicitly required. This results in an expression of the generalized

joint forces Q(q, q̇) expressed as a function ϕ of the MBS kinematics (q,q̇,q̈) and its dynamic parameters. This

formulation of the equations is said to be implicit in terms of the generalized accelerations (this formulation

is also referred as the inverse dynamics model in the literature).

Q(q, q̇) = ϕ(q, q̇, q̈, δ, frc, trq, g) (7)

ROBOTRAN – Both the semi-explicit form (6) and the implicit form (7) are used for the MBS analyses

(Section 5). Based on a MBS topological description (i.e., in MBSysPad), the equations are generated

symbolically and stored in separated files (.c, .m or .py). The dirdyna file outputs both the mass matrix

term M and the vector c as a function of the system configuration (q, q̇, q̈). The invdyna file outputs the

right-hand side term ϕ as a function of the system configuration.
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3.2 Dynamics of Constrained Multibody Systems

3.2.1 Dynamic and constraint equations

Most multibody applications contain loops of bodies (car suspension, parallel robots, mechanisms, etc., as

shown in Fig. 10) which impose the generalized joint coordinates q to satisfy geometrical constraints at any

time, denoted hl(q) = 0. Beside these loop constraints, other algebraic constraints, denoted ha(q) = 0, can

arise for other reasons (Section 4.6).

Gathering these m constraints together, we can write:

h(q) =

(
hl(q)

ha(q)

)
= 0 [m ∗ 1]

Figure 10: Example of closed-loop multibody systems

In order to fully describe the system, these constraints and their first and second time derivatives must

be added to the equations of motion7, in which constraint forces are introduced via the Lagrange multipliers

technique. The semi-explicit form (6) transforms in the following differential algebraic equations (DAE)

system (8-11):

M(q) q̈ + c(q, q̇, g) = Q(q, q̇) + JTλ (8)

h(q) = 0 (9)

ḣ(q, q̇) = J(q)q̇ = 0 (10)

ḧ(q, q̇, q̈) = J(q)q̈ + J̇ q̇(q, q̇) = 0 (11)

where:

• J = ∂h
∂qt denotes the constraint Jacobian matrix (dimension: [m ∗ n]),

• J̇ q̇(q, q̇) is the quadratic term (involving the products q̇i q̇j) of the constraints at acceleration level

(dimension: [m ∗ 1]),

• λ represents the Lagrange multipliers associated with the constraints (dimension: [m ∗ 1]).
7in which, for legibility reasons, we will no longer indicate the dependence with respect to the dynamic parameters, δ and

the external forces, frc and torques, trq.
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NB: at this level, only holonomic scleronomic8 constraints (i.e., which can be written in the form

of algebraic equations h(q) = 0) have been considered. Non-holonomic constraints (such as the

tridimensional pure rolling motion between bodies), which can only be written at the velocity

level w(q, q̇) = 0, are not considered in this text. Nevertheless, they can formally be added

— at velocity and acceleration levels (equations (10-11))— to the set of holonomic constraints,

but they must be processed differently during the numerical resolution: in particular their time

integration — if required — must be performed numerically since the algebraic form (9) does not

exist for these non-holonomic constraints.

The compact implicit formulation (7) can also be written for a constrained MBS. In that case, the

equations of motion are written as the DAE system (12-15).

ϕ(q, q̇, q̈) = Q(q, q̇) + JTλ (12)

h(q) = 0 (13)

ḣ(q, q̇) = J(q)q̇ = 0 (14)

ḧ(q, q̇, q̈) = J(q)q̈ + J̇ q̇(q, q̇) = 0 (15)

3.2.2 Index reduction

Various methods can be used to solve the DAE systems formed by (8-11) or (12-15). Among these, one can

opt for a full index reduction9 of the system to a purely differential form, which can be obtained by means

of the so-called Coordinate Partitioning Method [3].

The Jacobian matrix J(q) is assumed to have full rank m. In this case, the constraints h(q) = 0 are

independent and m generalized coordinates can be locally expressed as functions of the (n −m) others (n

denoting both the total number of coordinates and joints). In this way, it becomes possible to reduce the

original DAE system (8 - 11) to a set of (n − m) ordinary differential equations (ODE) in these (n − m)

independent coordinates. This reduced set represents the equations of motion of the constrained multibody system,

where (n−m) also corresponds to its number of degrees of freedom. Mathematically speaking, the reduction amounts

to project the equations of motion (8) in the constraints space along the permissible motion directions.

The first step is to perform the coordinate partitioning by defining two partitions within the generalized

coordinates: the independent and the dependent ones. After reordering the vector of generalized coordinates q (and

the columns of the constraint Jacobian J accordingly), the following partition holds:

q =

(
qu

qv

)
; J =

(
Ju Jv

)
(16)

Where qu denotes the subset of (n−m) independent coordinates and qv denotes the subset of dependent coordinates.

If the subset qv is chosen correctly, the m by m matrix Jv will be regular (Section 5.1 for more details).

Once the coordinate partitioning is established, the second step is to perform the index reduction which simply

relies on matrix permutations and operations to produce the reduced ODE system.

Starting from equation (8), let us first partition and rearrange the generalized mass matrix M and the vector c

according to the coordinate partitioning (16):(
Muu Muv

Mvu Mvv

)(
q̈u

q̈v

)
+

(
cu

cv

)
=

(
Qu

Qv

)
+

(
Ju

t

Jv
t

)
λ (17)

8Rheonomic constraints have the form h(q, t) = 0 with an explicit dependence on time t. They are not considered here for

conciseness: in Section 4.1 we will consider driven variables which enable to deal with rheonomic constraints without resorting

to an explicit dependency of time t.
9from an index-3 DAE system to a index-0 DAE system (i.e., a ODE system)
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Since the constraints are assumed independent, Jv is regular which allows for the elimination of the unknowns λ

using the lower part of system (17):(
Muu Muv

)( q̈u

q̈v

)
+Bvu

t
(

Mvu Mvv

)( q̈u

q̈v

)
+ cu +Bvu

tcv = Qu +Bt
vuQv (18)

where we define the so-called coupling matrix: Bvu
∆
= − (Jv)

−1 Ju. The algebraic constraints have now to be solved

in order to eliminate the dependent variables qv. While analytical solutions can exist for specific cases, the alge-

braic constraints (9) are generally nonlinear and require an iterative procedure to be solved. The Newton-Raphson

algorithm can be used to express qv for a given qu through successive estimations of qv:

qk+1
v = qkv − (Jv)

−1 h |qv=qkv
(19)

Where the right-hand side is evaluated for qv = qkv and the values of qu correspond to the instantaneous configuration.

Using the first (eq. (10)) and second derivatives (eq. (11)) of the constraints, the generalized velocities and acceler-

ations q̇v and q̈v are respectively expressed via classical linear algebra techniques.

q̇v = Bvu q̇u (20)

q̈v = Bvu q̈u + b with b
∆
= −J−1

v (J̇ q̇) (21)

And can also be eliminated from the differential equations (18). This produces the final reduced system:(
Muu +MuvBvu +Bvu

tMvu +Bvu
tMvvBvu

)
q̈u

+
(
Muv +Bvu

tMvv

)
b+ (cu +Bvu

tcv)− (Qu +Bt
vuQv) = 0

which can be concisely written as:

Mr(qu)q̈u + Fr(q̇u, qu) = 0 (22)

The set of ordinary differential equations (22) constitutes the equations of motion of the constrained system described

in terms of the n−m independent generalized coordinates qu. The workflow to obtain the system (22) through the

index reduction is summarized in Figure 11.

Newton-Raphson

Ext & Joint 
Forces

Figure 11: ODE model of constrained MBS.

The independent accelerations q̈u are easily expressed as a function of (qu, q̇u) by solving the system (22) for q̈u.

The solving and the reduction (17-21) coupled with the computation of M and c can be encapsulated in one optimized

file accelred generated symbolically (available on demand). This file is both system- and partitioning-dependent.
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Given the coordinate partitioning (qu,qv), the reduction can also be applied to the implicit form (12 - 15) :(
ϕu

ϕv

)
=

(
Qu

Qv

)
+

(
Ju

t

Jv
t

)
λ (23)

As for the semi-explicit case, from the second line of the above equation we can compute the Lagrange multipliers,

the matrix Jv being regular, and substitute them in the first line. We obtain a reduced set of n−m equations which

can be used to express the joint forces in the independent joints, Qu, as a function of the MBS dynamics (ϕ) and the

dependent joint forces Qv.

Qu = ϕu +Bt
vu(ϕv −Qv) (24)

The right-hand side in equation (24) consists in the ϕ computation and the index reduction of the implicit

equations. The computation of the right-hand side is encapsulated in one optimized file invdynared generated sym-

bolically. This file is both system- and partitioning-dependent.

Although equations (22) are sufficient to analyze the MBS dynamics, some ”interesting” variables have been

eliminated in the reduction process: the dependent accelerations q̈v and the Lagrange multipliers λ. For a given

system state (q̈u, q̇u, qu), they can be easily computed as follows:

• q̈v can be obtained directly from system (21).

• As regards the Lagrange multipliers λ, the lower part of equation (17) can be used to recover them:

λ = (Jv
t)−1 {Mvuq̈u +Mvv q̈v + cv −Qv} (25)

The lagrange multipliers λ are automatically computed and put in a result file. See next sections for more information.

3.2.3 Generation of loop constraints

When dealing with closed loop MBS, a so-called cutting procedure is implemented to artificially restore a tree-like

structure (recall Fig. 3b). This procedure is at the root of the automatic generation by ROBOTRAN of the loop

constraints hl(q) = 0 and their Jacobian matrix Jl. Three cutting procedures are systematized in ROBOTRAN and

presented here below.

Based on a given MBS topological description, the symbolic generator creates two files: mbs cons hJ where

the loop constraints and their Jacobian matrix are computed and mbs cons jdqd where the term J̇lq̇ in ḧl(q, q̇) is

computed.

Cut of a body (type 1) This first procedure is the most general10 one and consists in cutting a body of the

loop into two parts denoted the original body o and the shadow body sh. Figure 12 illustrates this cut for which six

constraints must be satisfied :

1. three position constraints (h1(q), h2(q), h3(q)) imposing that bodies o and sh have a common point Po ≡ Psh

at any time,

2. three orientation constraints (denoted h4(q), h5(q), h6(q)) expressing that frames {X̂o} and {X̂sh}must coincide

at any time.

Although this first cutting procedure is general, it leads to six constraints and, most of the time, practical applications

can avoid this first technique by resorting to one of the following two procedures.

This first type of cut is defined in the graphical editor MBsysPad. To characterize it, we need to define the compo-

nents of the vector dlp locating – in the shadow body sh, with respect to joint sh – the point Psh (the anchor point

of joint o in the case illustrated in Fig. 12). The components of dlp are constant in the {X̂sh} frame.

10but paradoxically, seldom used because it is the most costly in terms of arithmetical operations.
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{X̂sh}joint o

original body ’o’

shadow body ’sh’

{Î}

{X̂o}
Po

Psh

Figure 12: Cutting procedure of type 1: cut of a body.

Cut of a ball joint (type 2) This procedure applies to loops which contain a ball joint that can be considered

as “ideal” from both the geometrical (no backlash) and dynamic (no torque transmitted) points of view. As shown

in Fig. 13, the spherical joint under consideration is removed from the system11. Denoting the center point P of the

spherical joint by Pp for the primary kinematic chain and by Ps for the secondary kinematic chain respectively, three

position constraints suffice to close the loop: they simply express that the position vectors x(Pp) and x(Ps) coincide

at any time:

x(Pp)− x(Ps) = 0 , ∀ t

In case of a planar loop, the cut can be applied to any ”ideal” hinge: only 2 constraints will be expressed in the plane

of the loop.

{Î}

Pp Psbody p body s

secondary
chain

primary
chain

x(Ps)x(Pp)

body o

Figure 13: Cutting procedure of type 2: cut of a ball joint.

This second loop cut is introduced in the graphical editor MBsysPad. The ball cut is defined by connecting two

anchor points. The constraints will be expressed in the frame associated with the youngest common ancestor body

(body o in Fig. 13). The λ are the force components execed by the child (second body) to the parent (first body).

11no additional ”shadow” body is required in this case.
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Cut and removal of a connecting rod (type 3) This procedure applies to loops which contain a connecting

rod whose mass and inertia can be neglected and whose (two) connecting joints can be considered as “ideal”, as

previously defined for the spherical joint.

As shown in Figure 14, the connecting rod under consideration is simply removed from the system. Denoting by Pp

and Ps the ends of rod on the primary body p and secondary body s respectively, a single constraint is sufficient to

satisfy the loop kinematics, expressing that the distance lrod between points Pp and Ps remains constant at any time.

The constraint reads:

∥x(Pp)− x(Ps)∥2 − l2rod = 0 , ∀ t and lrod > 0

The procedure holds for a planar loop, also leading to a unique constraint.

{Î}

Pp Psbody p body s

secondary
chain

primary
chain

lrod

Figure 14: Cutting procedure of type 3 : removal of a connecting rod.

This third type of loop cut is introduced in the graphical editor MBsysPad. The rod cut is defined by connecting

two anchor points. The length lrod of the connecting rod, that must be strictly positive, has to be provided. The

corresponding λ are provided in the results file as the force along the rod (negative value is traction, positive is

compression).
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4 Special Features

This Section describes how to implement and define specific constitutive laws that could not be derived by the

symbolic equations generator alone (e.g., aerodynamic external forces or the Hooke’s law for a spring element). It is

a complement to the MBS formalism description (Section 3).

4.1 Driven variables

In various situations, some of the generalized joint coordinates qi are no longer considered as variables because their

motion is either simply locked (e.g., a skewed joint, see Section 2.4.3), or forced to obey a specific function of time t.

In the present formalism, those variables are denoted driven variables and identified by the subscript c.

Formally if joint i is driven, then qi, denoted qic, is such that

qic = f(t) ; q̇ic = ḟ(t) ; q̈ic = f̈(t) (26)

in which the function f(t) is imposed (and implemented by the user). Strictly speaking, equation (26) represents an

additional constraint on the system involving the sole variable qic. Its simple form enables us to treat this constraint

separately (from the set h(q)) in a more efficient way, as we shall see here below.

Some typical examples of driven variables are:

• a sinusoidal excitation: qic = a sinω t ; q̇ic = aω cosω t ; q̈ic = −aω2 sinω t

• the constant rotation of a body (ex. a crank): qic = ω t ; q̇ic = ω ; q̈ic = 0

• the locked position of a joint variable: qic = α ; q̇ic = 0 ; q̈ic = 0

To take this type of variable into account in the formalism, and in particular in the coordinate partitioning

reduction, we first consider them as being part of the independent set of variables qu
12, but whose value obeys a

prescribed law of type (26). Of course, driven variables cannot be time integrated13. The difference in the reduction

process starts when expressing the final forms (22) and (24).

Formally, let us split qu into driven variables quc and really independent variables quu:

qu =

(
quu

quc

)
(27)

The semi-explicit system (22) can then be partitioned accordingly and becomes, using the Lagrange multipliers

technique: (
Mruu Mruc

Mrcu Mrcc

)(
q̈uu

q̈uc

)
+

(
Fru

Frc

)
=

(
0

λc

)
(28)

In which λc denotes the Lagrange multipliers associated with the driven motion constraints (26). The reduced form

of the dynamic equations of a constrained multibod system containing driven variables finally reads:

Mruu q̈uu + (Fru +Mruc q̈uc) = 0 (29)

The implicit system (24) can also be partitioned accordingly and becomes, using the Lagrange multipliers technique:(
ϕuu

ϕuc

)
−

(
Quu

Quc

)
−

(
ξu
ξc

)
=

(
0

λc

)
(30)

with ξ
∆
= Bt

vu(Qv − ϕv). The first line of (30) can be used to compute Quu for a given system dynamics.

Quu = ϕuu − ξu (31)

If the Lagrange multipliers λc associated with the driven motion are required as outputs, the lower part of equa-

tion (28) or equation (30) can both be used:

λc = Mrcu q̈uu +Mrcc q̈uc + Frc (32)

λc = ϕuc −Quc − ξc (33)

12Obviously, considering a driven variable as a dependent one is intrinsically aberrant!
13or subject to any other numerical process.
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Lagrange multipliers λc are often of practical interest14. Indeed they represent the joint forces (resp. torques) for

driven prismatic (resp. revolute) joints which are of great interest for dimensioning purpose in a fully dynamic situ-

ation. In fact, those equations represent a local inverse dynamics problem.

Driven variables are first declared in the MBsysPad editor and then their motion law at position, velocity and

acceleration levels (26) are introduced in the user DrivenJoint function for which a template is provided in \userfctR
project folder.

4.2 Joint forces and torques

These forces (torques) act inside the joints and their sole contribution, Qi, to the ith equations of motion in system

(6), (7), (8) or (12) is the one which is aligned with the joint axis (ex. a friction torque in a door hinge or a viscous

force in a telescopic device).

Using the definition (5) of the joint unit vector êi, let us introduce the vector Qi as the force (resp. the torque)

on body i produced in the prismatic (resp. revolute) joint i by its parent h in the direction of the joint axis :

Qi = Qi êi

Qi, the ith element of Q in (6) or (8), represents the component of this force (resp. torque) along the joint vector

axis. Let us point out that the action/reaction principle obviously holds for joint forces but the sole contribution –

Qi – to be introduced in the MBS equations (6) or (8) is the one applied ”by the parent h on the child i”.

The constitutive equation of Qi is problem dependent and thus its description is left to the user. The following

cases are given as illustrative examples:

• a perfect (prismatic/revolute) joint: Qi = 0,

• a linear prismatic (resp. revolute) spring with stiffness K: Qi = −K (qi − qin) where qin denotes the spring’s

neutral displacement [m] (resp. [rad]),

• a linear prismatic (resp. revolute) damper (with damping coefficient D): Qi = −D q̇i,

• a general law in terms of qi and q̇i and some parameters pj : Qi = g (qi, q̇i, pj).

Joint forces and torques do not require any intervention in the graphical editor MBsysPad. Their constitutive law

will be implemented in the user function user JointForces for which a template is provided in the \userfctR project

folder.

4.3 External forces and torques

External forces and torques represent any force or torque acting on the bodies, in addition to the joint forces/torques

and to gravity. Their number, direction and nature are left to the user. In ROBOTRAN , they are gathered together

for body i in a unique resultant force vector frci and a unique resultant torque vector trqi with respect to the

body center of mass CM i. Let us point out that the torque resultant trqi contains the sum of the moments of all

the external forces plus the – possible – pure torque resultant applied to body i. A typical example of this is the

tire-ground contact problem in vehicle dynamics: the contact force produces a moment with respect to the wheel

center of mass, to which a pure torque arising from the local spin contact must be added to form the trqi vector.

External forces and torques on body i must be introduced by the user in terms of their components in the inertial

frame [̂I]:

frci = [̂I]t frci and trqi = [̂I]t trqi (34)

External forces and torques are first graphically introduced by the user in the MBsysPad editor (via a F sensor).

Afterwards – as for joint forces – their constitutive laws are implemented by the user in the function user ExtForces

for which a template is provided in the \userfctR project folder. The inputs and outputs of this user fonction are

given in the inertial frame.

14sometimes more than those associated with the loop constraints
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4.4 Link forces

By experience, numerous practical applications require the introduction of contributive forces (e.g., spring, actuator,

damper, ...) acting between two points of the system (e.g., a parallel spring/damper element in a suspension). In

ROBOTRAN , such an element is called a ”link” and is defined between two anchor points. While acting internally

between bodies of the structure, they are considered by the symbolic generator as a pair of action-reaction external

forces (see above section) as the link is massless and not necessarily aligned along a joint axis.

{Î}

body j

P i
l

body i

P j
l−F

F
z, ż

êl

Figure 15: Link between body i and j.

Link forces as pairs of external forces and torques Let us define a unit vector êl along the link axis

(from i to j) defined by anchor points P i
l and P j

l . This allows us to define vectors for the relative displacement and

the relative velocity of point P j
l with respect to point P i

l along the link axis:

z = z êl (35)

ż = ż êl (36)

Let us now assume a given constitutive law f for the link force F which might depend on the displacement z15 and

the relative velocity ż between the two anchor points.

Flink = f(z, ż) (37)

The vector link force representing the force applied by body j to body i is given by:

F = Flink êl (38)

Consequently, one can now compute the link force contribution to the resultant external vector force frci and external

torque trqi applied to the body i. For this purpose, we denote by xi
l(q) the absolute vector position of the attachment

point of the link on the body i, and similarly by xj
l (q) the vector position of its attachment point on the body j.

The contributions to frci and trqi are given by:

frci = F

trqi =
(
xi
l − xi

CM

)
× F (39)

Where xi
CM denotes the position vector of the center of mass of the body i. Similarly, the contributions to the

external resultant force/torque on body j read:

frcj = −F

trqj = −
(
xj
l − xj

CM

)
× F (40)
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{Î}

body j

P i
l

body i

P j
l−F

F
P i
CM

tqri

frci

tqrj
frcj

P j
CM

Figure 16: The link force is transformed into a 2 sets of external forces and torques.

In order to transform any constitutive equation of type (37) characterizing an internal link of the multibody

system into external forces/torques (frci, trqi) applied to the involved bodies, we thus require, as functions of the

joint generalized coordinates, the expressions of the position vectors of the two anchor points (in addition to the

position vectors of the centre of mass CM i).

Link forces : MBS implementation In order to compute the contribution of a link to the MBS dynamics,

different calculation steps are realized either in the symbolic file (S) generated by ROBOTRAN or in the user function

(U) implemented by the user:

• S – compute the absolute position and velocity of the two anchor points xi
l and xj

l ,

• S – compute the distance Z and/or the relative velocity Ż between the two anchor points,

• U – introduce the constitutive equation Flinkf(Z, Ż, p, t) in which p denotes any kind of user parameters,

• S – project Flink and −Flink onto the inertial frame to respectively obtain frci and frcj ,

• S – compute the resultant body torques trqi and trqj in the inertial frame.

Regarding the calculations, the user is only responsible for the constitutive equations Flink=Flink(Z, Ż, p, t).

Link forces are first graphically introduced in the MBsysPad editor. The link element is defined by connect-

ing two anchor points. Then, link force constitutive equations are implemented by the user in the user function

user LinkForces for which a template is provided in the \userfctR project folder.

4.5 Sensor kinematics

For various reasons, it can be of interest to obtain the symbolic expression of the forward kinematics of any sub-chain

in the multibody system, i.e., the position, the orientation, the Jacobian matrix, the linear/angular velocities and/or

the linear/angular accelerations of a given body (and of a particular point S of this body denoted ”sensor”) with

respect to a given frame.

For instance, sub-chain forward kinematics is useful for:

• the introduction of a user constraint in the MBS (e.g., ha(q) = 0 in Section 4.6)

• the introduction of a specific force whose constitutive equation requires the computation of the kinematics of

a given point (e.g., the contact slip velocity of a wheel/ground force model);

15Note that the displacement z is always positive in the tridimensional.
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• the computation of a specific result, such as the absolute position or acceleration of a point (e.g., the vertical

acceleration of a car passenger).

Sub-chains are defined for a tree-like MBS by covering the system from the base to the leaves bodies (ex.: sub-chain

2-4-7 in Fig. 3a and 2-4-9-10 in Fig. 3b ). Since closed structures are first cut in order to restore a tree, sub-chain

kinematics can be used in any situation.

Of course, if one plans to compute the position psens(q) of a given sensor S, the loop constraints must be solved

previously in such a way that the computation of vector psens is made with the correct values of the generalized

coordinates q = {qu, qv}.
Let us consider in Fig. 17, the sub-chain {o...i} in which o represents the original body and i the body carrying

the sensor S, located by a constant position vector di = [X̂i]t di with respect to the joint i connection point (O′i):

{Î}

body i

sub-chain psens

body o

{X̂o}

{X̂i}

Rsens

S
di asens

vsens

ωsens

ω̇sens

Figure 17: Sensor for a sub-chain kinematics.

For this sub-chain, the forward kinematics aims at computing:

• psens = [X̂o]t psens : the position vector of sensor S with respect to point O′o,

• Rsens: the rotation matrix from inertial frame {X̂o} to body frame {X̂j} such that [X̂j ] = R sens[X̂
o] and such

that, for a given vector x, its components in these frames obey: [xi] = Rsens [x
o],

• vsens = [X̂o]t vsens: the relative velocity of point S with respect to frame {X̂o},

• ωsens = [X̂o]t ωsens: the relative angular velocity of frame {X̂i} with respect to frame {X̂o},

• Jsens =

(
∂vsens
∂q̇t

∂ ωsens
∂q̇t

)
, the Jacobian matrix containing the partial derivative of the components vsens with

respect to q̇ (rows 1,2,3) and of the components ωsens with respect to q̇ (rows 4,5,6) (N.B.: column k corresponds

to the generalized joint velocity q̇k),

• asens = [X̂o]t asens: the relative acceleration of point S with respect to frame {X̂o}

• ω̇sens = [X̂o]t ω̇sens: the relative angular acceleration of frame {X̂i} with respect to frame {X̂o}.

Most of the time, the desired computation is related to absolute quantities (position, velocities, ...) with respect

to the inertial frame {Î}. In that case, the original body o will simply be the base (body 0).

Sensors are first graphically introduced in the MBsysPad editor. The sensor is always associated with an anchor

point. The computation of their kinematics with respect to the inertial frame is automatically generated in symbolic

form in the function mbs projectname sensor that the user can call for any purpose and from any of his user functions.
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4.6 Algebraic constraints

Besides the loop constraints described in section 3.2.3, user constraints, denoted ha(q) = 0, can also be introduced

between the generalized coordinates. For instance, they can be used in order to impose parallelism between two

bodies (θi = θj) or to model the motion in a screw joint with a lead: β qi = β qj , with β[ m
rad

], etc.

ha(q) = 0 (41)

For these user constraints, the associated Jacobian matrix Ja(q) and the quadratic term (J̇ q̇(q, q̇))a appearing in the

constraints derivatives need to be explicitly provided.

The user constraints themselves are implemented in the user functions user cons hJ (for the constraints and the

Jacobian matrix) and user cons jdqd (for the quadratic term). In addition, the number of user constraints ha has

to be defined by the user himself in the main simulation file.

4.7 Constitutive differential equations

Differential Equations can be added to the existing multibody equations of motion (22) or (24). Such feature is very

useful to deal with multiphysics problems (e.g., electrical motors, pneumatic air flow, PID controller, ...), by coupling

the domains at the equational level rather than by resorting to cosimulation techniques that complexify the numerical

process. The additional state variables, called ux, are added to the set of mechanical variables qu and q̇u
16. In a

time integration context, there are 2nu + nux first-order differential equations, the first 2nu are simply derived from

equation (22) and the nux additional differential equations are specified by the user.
d

dt

(
qu

q̇u

)
=

(
q̇u

f(qu, q̇u)

)

u̇x = fusr(ux, qu, q̇u)

(42)

Where f stands for the solution of the linear system (22) for the independent generalized acceleration q̈u.

The expression for the differential equations fusr is specified in the user function user derivative. In addition,

the number of state variables ux has to be defined by the user himself in the main simulation file.

16where u denotes the non-driven independent variables in that case
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5 Analysis Modules

This section briefly describes the numerical methods that are widely used in multibody dynamics, and implemented

in the ROBOTRAN software. For the sake of clarity, we consider the case without driven variables qc; hence we have

qu = quu.

5.1 Coordinate partitioning

In order to solve the DAE system inherent to the constrained MBS, an order reduction is performed based on the

Coordinate Partitioning method (see section 3.2.1). Hence, once the constraints h(q) = 0 and their time derivatives

have been established, a partitioning of the coordinates must be done: q = {qu, qv} (see eq. 16), in which the number

of independent coordinates qu corresponds exactly to the number of d.o.f. of the system.

The problem is to select the ”best” choice of qu and qv for numerical conditioning purposes. The latter is mostly

related to the constraint sub-Jacobian matrix Jv which must be inverted17 at different places (see Section 3.2.1):

• to make the Newton-Raphson converge (eq. (19));

• to compute the coupling matrix Bvu (eq. (18));

• to compute the Lagrange multipliers λ = (Jv
t)−1... (eq. (25)).

The best conditioned this matrix will be, the more robust the system reduction will be. As soon as there are a lot

of possibilities (or combinations) in selecting m variables qv among n +m variables q, we will prefer the one which

makes Jv very well conditioned: this can be performed by means of a LU−factorization of the whole rectangular

matrix J(q) with full (rows and columns) or partial (columns) pivoting. This well-known technique aims at placing

the largest pivots – in absolute value – on the factorized matrix diagonal, by permuting rows and/or columns accord-

ingly. Regarding the constraints, permuting columns i and j amounts to permute variables qi and qj .

Once the factorization is finished, the m first columns will be associated with the best dependent variables qv, the

other ones being the independent ones qu. An interesting sub-product of this permutation process is the detection

of possible redundant constraints (that is, constraints which are linear combinations of other ones) or of trivial

constraints (0 = 0): in that case, the LU factorization – done with permutations – stops before reaching the last line

of matrix J , by detecting a null pivot on the diagonal. This last factorization step indicates the rank r of J .

If the rank of J equals the number of constraints, r = m, there are no redundant constraints (J is full rank).

Else, if r < m, redundant constraints are detected for the considered configuration and will be disregarded in all

subsequent processes. Only r independent constraints will be considered and r dependent variables qv. The system

has thus n− r degrees of freedom.

The coordinate partitioning is normally performed once for a given analysis. As said before, many combinations

are possible and a intuitive reasoning, based on the system morphology is often a good start (ex. for the slider-crank

mechanism on top of Fig. 10, the crank rotation can obviously be chosen as the independent variable qu). For a

tree-like MBS exempt from constraints, there are obviously no needs for partitioning.

First, the user can — a priori — indicate his own choice of partitioning between independent and dependent

variables in the graphical editor MBsysPad. Then, the CoordPart module takes the user’s choice into account

(verification/validation) and proposes the best partitioning. This module is a prerequisite to any other analysis on

constrained MBS. The resulting partitioning (i.e., the partition of qu and qv) is stored in the data structure by the

CoordPart module which also closes the loops and solve the constraints h(q) = 0. Afterwards, the stored partitioning

can be used within other modules which require the system reduction.

17more precisely, factorized
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5.2 Time integration

The motion of the multibody system (qu(t), q̇u(t)) starting from an initial configuration (q(t = 0), q̇(t = 0)) can

be predicted by time-integrating the acceleration q̈u(t). The principle for a tree-like (i.e., unconstrained) and a

constrained MBS is exactly the same. The framework for the constrained MBS is first presented. Then the tree-like

case is briefly treated.

To time integrate the motion, the direct dynamics18 of the constrained MBS can be used, remembering that the

accelerations q̈u can be obtained by solving the linear system (22).

q̈u = f(qu, q̇u)

For this purpose, rather than ”blindly” inverting the reduced mass matrix Mr(qu), we preferably resort to linear

algebra techniques (i.e., a Cholesky decomposition of the symmetric positive-definite mass matrix Mr followed by a

backward/forward substitution applied to the linear system).

The sequence of computations for time integrating the constrained MBS equations of motion (22) is illustrated

in the block diagram of Figure 18 largely based on that of Figure 11.

Newton-Raphson

Ext & Joint 
Forces

ODE model 

dt

Figure 18: Time integration process of a constrained MBS.

The dashed box represents the ODE model whose inputs are the independent position qu and velocities q̇u and

outputs are the independent accelerations q̈u. This model is perfectly suited to classical integrator scheme after

reducing the system order from two to one:

y =

(
qu

q̇u

)
→ ẏ =

d

dt

(
qu

q̇u

)
=

(
q̇u

f(qu, q̇u)

)
(43)

For the case of an unconstrained MBS, the generalized accelerations are computed based on system (6).

q̈ = f(q, q̇)

In this specific case, the ODE model solely consists in the computation of frc, trq, Q, M , c as functions of q and q̇

and the solving of the linear system (through the Cholesky decomposition of M).

Time integration is performed via the Dirdyna module. The time integrator can be chosen according to the problem

at hand through the setting of specific options.

18the direct dynamics is the computation of the generalized joint accelerations q̈u for a given configuration (qu, q̇u) of the

system to which forces and torques are applied.
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5.3 Equilibrium

Generally, an equilibrium is a configuration for which the forces are in balance with no absolute acceleration among

the multibody system. In order to compute it, the semi-explicit reduced equations of motion (22) or its implicit form

(24) can be used in their residual forms19:

Rr(qu, q̇u, q̈u) = Mr q̈u + Fr = ϕu −Qu −Bt
vu(Qv − ϕv) = 0 (44)

Thereafter, the equilibrium variables are denoted as x and the equilibrium equations as F . The number of

equilibrium variables nx must be consistent with the number of equations. A solution of the equilibrium problem is

generally denoted with a superscript *.

F (x∗) = 0 (45)

Equilibrium is also an indispensable pre-process for the Modal Analysis (see section 5.4).

5.3.1 Static equilibrium

If a static equilibrium is considered, the joint velocities and accelerations are null (i.e., q̇u = 0 and q̈u = 0). The

reduced form of the equations of motion transform in a set of non-linear algebraic equations in terms of the independent

coordinates, qu:

Rr(0, 0, qu) = Fr(qu) = 0 (46)

This nonlinear system of equations can be solved iteratively with the Newton-Raphson algorithm:

xk+1 = xk −
(
∂F

∂x

)−1

F |x=xk (47)

with x = qu and F = Fr in case of static equilibrium.

Even though the iteration process is performed on the independent coordinates: x = qu (excluding the driven

variables), the equilibrium configuration concerns all the variables including the dependent ones.

5.3.2 Non-sensitive variables

Some variables are sometimes non-sensitive with respect to the equilibrium configuration in the sense that their

algebraic value does not affect the term F , and thus the equilibrium (e.g., the x and y position of a stationary vehicle

on a flat ground). A non-sensitive variable xi leads to a null gradient for the equilibrium equations which can make

the algorithm fail:
∂F

∂xi
= 0 (48)

These non-sensitive variables must be either omitted in the computation or replaced by other sensitive variables. In

the first case, their values can then be chosen arbitrarily and will not evolve during the iterative process.

5.3.3 Exchange of variables

For some application, equilibrium variables must be exchanged and the equilibrium procedure can be performed on

a different set of nx variables, which are by default the independent coordinates. One of the independent coordinates

qi is then replaced by another parameter of the system(e.g., a mass, a stiffness coefficient, a length,...), denoted xch.

x = [qu\{qi}, xch] (49)

The equilibrium equations remain the same, i.e., Rr = 0. However in this case, the replaced coordinates qi are

frozen and kept constant during the equilibrium process. It is important that the exchange makes sense physically

and that the exchanged variables xch (i.e., the new ones) are sensitive to the equilibrium equations.

19numerically, it is always more efficient to work with the implicit form.
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5.3.4 Extra variables

In line with Section 4.7, equilibrium equations can be added to the multibody equations of motion. Such feature can

be used to deal with multiphysics problems or to make some adjustment on the static configuration of the MBS (e.g.,

adjusting the track rod length of a car to obtain a given toe-in or toe-out characteristics for the front wheels). This

implies to define extra equations of equilibrium and extra equilibrium variable such that:

x =

(
qu

xe

)
F =

(
Rr

Fe

)
(50)

As previously, the Newton-Raphson will iterate on the nx = nu + ne variables until it finds the equilibrium configu-

ration x∗ that satisfies F (x) = 0.

5.3.5 Dynamic Equilibrium

When the velocities and/or the accelerations are non-zero, the equilibrium is said to be dynamic. For instance, forces

(or torques) Fdyn act against resistance forces (often friction) to maintain the vehicle in a continuous constant motion.

The main application is vehicle dynamics for which constant speed straight line and steady-state cornering are of

interest. Computing such equilibrium utilizes the notion of non-sensitive variables and variable exchanges.

The independent position qi associated with a non-zero velocity q̇i is not relevant and is considered non-sensitive

(e.g., the angular position of a wheel qi). This variable qi can be removed from the set of equilibrium variables and

exchanged for a sensitive one. There are two ways to compute the steady-state equilibrium. Depending on which

approach is chosen, the exchange variable is the force Fdyn or the speed q̇i. In other words,

• Fix the speed and determine the forces (or torques) necessary to maintain this speed

Fixed q̇i x = [qu\{qi}, Fdyn] → F (x) = 0

• Fix the forces (or torques) and determine the corresponding speed

Fixed Fdyn x = [qu\{qi}, q̇i] → F (x) = 0

It is important to notice that the exchange only concerns the joint i and that the other independent variables from

qu are still part of the equilibrium process.

Equilibrium is preferably performed via the Equilibrium module. From a good initial set of the independent

variables qu (stored in the data structure), the module tries to find the static equilibrium solution (q∗u) iteratively.

The module option allows for variable exchanging or equation addition. This allows the user to perform

• an inverse equilibrium: by replacing a qu subset by a body mass, a spring stiffness, a body length, etc.;

• a dynamic equilibrium: by replacing a non-sensitive coordinate qu by its velocity q̇u.

5.4 Modal analysis

A modal analysis is the study of the dynamic properties of free systems in the frequency domain. Through the modal

analysis, the eigenmodes and eigenfrequencies of the system are calculated. In the case of multibody system, it is

particularly interesting for control purpose as it allows to identify the stable and unstable modes of the system. It

is also useful to study the vibration behavior of the system and to identify unstable modes or critical frequencies of

excitation that could lead to resonances. The modal analysis is performed on the multibody system alone without

considering any additional constitutive ODE that could have been added through the user derivative (Section 4.7).
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5.4.1 Eigensystem

Before carrying out a modal analysis, a linearization of the reduced set of equations (22) around the equilibrium

configuration x∗ is indispensable. For a general MBS model, this procedure must be performed numerically, producing

the following linearized system:

Mr(q
∗
u)∆q̈u +Gr(q

∗
u, q̇

∗
u)∆q̇u +Kr(q

∗
u)∆qu = 0 (51)

in which ∆qu = qu − q∗u, Mr, Gr and Kr respectively stand for the constant mass, gyroscopic/damping and stiffness

tangent matrices (size n−m = number of d.o.f.) found by a linearization procedure. To transform this second-order

linear system into the following first order form

ẋ = Ax, (52)

Let us define x as follows:

x =

(
∆qu

∆q̇u

)
→ ẋ =

(
∆q̇u

∆q̈u

)
System (51) can be written as: (

I 0

0 Mr

)
ẋ+

(
0 −I

Kr Gr

)
x = 0 (53)

which can finally be written on the desired form (52):

ẋ = Ax (54)

with

A
∆
= −

(
I 0

0 Mr

)−1(
0 −I

Kr Gr

)
=

(
0 I

−M−1
r Kr −M−1

r Gr

)
(55)

Considering a particular solution xi(t) of (54) whose components have the same time dependency (harmonic, expo-

nential):

xi(t) = vie
λt

with xi = {x1
i , x

2
i , ...., x

2(n−m)
i }, the previous differential equation ẋ = Ax becomes an algebraic system (”eigenvalue

system”):

(A− λE) v = 0 (56)

In which E stands for the unit matrix.

From system (56) the 2(n−m) eigenvalues λi (and their eigenvectors vi) can be found20 by solving:

det(A− λE) = 0

The 2(n−m) eigenvalues λi can be:

• real, corresponding to a non-oscillatory stable (λi < 0) or unstable (λi > 0) eigenmode

• purely imaginary (conjugate pair), corresponding to infinitively oscillating undamped eigenmode

• complex (conjugate pair), corresponding to an oscillatory stable (re(λi) < 0) or unstable (re(λi) > 0) eigenmode

• null, corresponding to a rigid mode

From (56), a maximum of 2(n−m) eigenvectors vi can then be found. Let us note that in case of multiple eigenvalues,

only one eigenvector will be produced and thus the number of eigenvectors will be less than 2(n−m). Moreover, in

case of complex conjugate eigenvalues, a pair of complex conjugate eigenvectors is produced, giving rise to a single

(and not two) eigenmode.

20For large systems, advanced numerical algorithms are used to find the λ’s (e.g., the ”eig” function in MATLAB).
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5.4.2 Eigenmodes

Referring to the solution (λi, vi) of system (56), each of them corresponds to a so-called eigenmode (characterized

by an eigenvalue and an eigenvector) of the system around its — static or steady-state — equilibrium configuration:

this is the purpose of modal analysis. For oscillatory eigenmodes (im(λi) ̸= 0), one can extract, from the eigenvalues:

• the undamped natural circular frequency: ω0 = |λi| =
√

(re(λi))2 + (im(λi))2 [rad/s];

• the undamped frequency: ν0 = ω0
2π

[Hz];

• the damping factor: ζ = 100 ∗ cos(arctan(− im(λi)
re(λi)

)) [%];

• the natural circular frequency of the – damped – mode: ω = ω0

√
1− ζ2 [rad/s];

• the frequency of the – damped – mode: ν = ω
2π

[Hz].

For any eigenmode i, the associated eigenvector vi describes, via its n −m components, the associated motion.

With this respect, an eigenvector will be advantageously written in terms of:

• the module21 rji of each of its component j: rji =
√

(re(vji ))
2 + (im(vji ))

2, j = 1 : n−m

• the phase22 ϕj
i of each of its component j: ϕj

i = arctan
im(v

j
i )

re(v
j
i )

Modal analysis has to be performed around an equilibrium configuration. Afterwards, the system linearization and

modal analysis are done in the Modal module. Results are the eigenvalues (including frequency, damping factor, ...)

and the associated eigenvectors whose 3D animation (in the MBsysPad program) is straitghtforward and allows the

user to clearly visualize the system moving according to a given eigenmode.

21Being computed, each eigenvector is normalized with its maximum component set to 1 for the module
22 0 rad for the phase
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5.5 Inverse Dynamics Problem

The inverse dynamics of a multibody system is the computation of the generalized joint forces (torques) Q applied

in the joints for a given configuration (q, q̇, q̈) or a desired trajectory (q(t), q̇(t), q̈(t)) of the MBS. The implicit formu-

lation23 Inverse dynamics is usefull for instance to control robot manipulators by predicting the feed-foward torques,

or to compute the joint net torques in the musculoskelettal model of the human body.

5.5.1 Unconstrained MBS

For unconstrained MBS, inverse dynamics can be directly obtained from the implicit form of the equations of motion

(7). In the context of inverse dynamics, let us distinguish two contributions in the vector Q: the passive generalized

joint forces Qp(q, q̇) (arising from internal joint stiffness, friction, etc.) and the active generalized joint forces Qa

(referring to the joint actuation). Generally speaking, each joint may involve these two components, the latter being

the unknown of the inverse dynamics problem, i.e.:

Qa = ϕ(q, q̇, q̈)−Qp(q, q̇) (57)

in which ϕ contains the dynamics of the MBS (including external forces and torques) induced by the desired trajectory.

For sake of clarity, the dynamic equations associated with the driven — or locked — coordinates quc have been

excluded from (57).

This equation represents the inverse dynamics of an unconstrained MBS, in which all the non-driven joints are

actuated. There are as many unknown Qa as equations: overactuation or underactuation is thus not possible.

5.5.2 Constrained MBS

As for a unconstrained tree-like MBS, one can be interested in computing the joint actuation in a constrained MBS

(i.e. with closed-loops) for a desired trajectory (q(t), q̇(t), q̈(t)). This is the case of parallel manipulators for instance.

Like for the direct dynamics, the coordinate partitioning is used to reduce the implicit form of the dynamic equations

(30). For a fully actuated MBS with n−m degrees of freedom, n−m active joint forces are unknown.

For sake of clarity, let us first consider the case where the actuators are located in the independent joints (coor-

dinates qu)
24. As regards the passive generalized forces, they can be applied anywhere, either in independent or in

dependent joints. Hence, the inverse dynamics of a constrained MBS reads:

Qa = Qu,a = ϕu −Qu,p +Bt
vu(ϕv −Qv,p) (58)

Generally speaking, the n − m actuators can practically be located in any joints, independently from the initial

coordinate partitioning. Hence, considering a partitioning {qe, qf} in which subscripts e and f refer to the active and

passive joints respectively, the previous equation becomes:

Qa = Qe,a = ϕe −Qe,p +Bt
fe(ϕf −Qf,p) (59)

in which the existence of the coupling matrix Bfe
∆
= − (Jf )

−1 Je imposes the sub-matrix Jf to be regular.

The implementation of the passive joint forces and torques must be done in the ”user JointForces” function as

for the direct dynamics (see section 4.2).

23also called the inverse dynamic model.
24or quu if driven joints are present
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5.6 Constraints solution (at position level)

As mentioned earlier, to solve the constraints (i.e., to close the loops for a given configuration), the Newton-Raphson

(N.R. in short) iterative algorithm is used for successive estimations of qv:

qk+1
v = qkv − (Jv)

−1 h |qv=qkv
(60)

Where k is the iteration step number, to find a solution q∗v with a predefined threshold (ex.: ϵ = 1e − 9). The

right-hand side of (60) is evaluated for qv = qkv and for values of qu and qc corresponding to the configuration of the

system.

A particular attention must be paid to the initial value of qv (i.e., qk=0
v ). In a time integration process for in-

stance, for which the constraints must be solved by N.R. at each time step, the previous step values of qv: q∗v,t will

be automatically used as initial value of the next time step : q0v,t+1.

The N.R. method for solving the constraints is automatically and internally performed by all modules during

the associated numerical process (coordinate partitioning, inverse dynamics, direct dynamics, equilibrium and modal

analysis).
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A Link forces in vehicles problem

The link forces, which are mainly inspired by vehicle suspension problems, have been automated in ROBOTRAN

as a practical means for reducing computational loads wherever possible. A typical example is illustrated in Fig. 19

which represents a five-bar left suspension system of a car.

Wheel carrier

Front of vehicle

Figure 19: Five-bar suspension system

In this suspension, a rod is connected to the chassis via the suspension elements: a parallel spring/damper device.

If the mass and inertia of these elements are negligible (with respect to the remainder of the vehicle), their dynamic

effects can thus be simply modeled by means of forces respectively applied to the chassis (F) and to a rod (−F). The

resulting multibody representation is sketched in Fig. 20.

From internal to external force formulation To make the following developments more legible, let us

suppose that the link force constitutive law (ex. suspension spring) has a linear characteristic through a stiffness k

and a neutral length Zo. The component Flink of the vector force Flink due to the spring is assumed to be given by

the user as:

Flink = + k(Z − Zo) (61)

where Z is the actual length of the spring. This vector force is applied to the material point of the chassis which

serves as an attachment point of the spring (i.e., the anchor point of the link), and is aligned with the spring direction.

Based on this constitutive equation, we can now compute the spring contribution to the resultant external vector

force frcchas and external torque trqchas applied to the chassis. For this purpose, we denote by xchas
spr (q) the absolute

vector position of the attachment point of the spring on the chassis, and similarly by xrod
spr(q) the vector position of

its attachment point on the rod. The vector link force is thus given by:

Chassis

Rodn5°

Wheel

carrier
WheelF

-F

F

Figure 20: Multibody model of the suspension.
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Flink = k (Z − Z0)

(
xrod
spr − xchas

spr

)
∥ xrod

spr − xchas
spr ∥ (62)

and the contributions to frcchas and trqchas are given by:

frcchas = Flink

trqchas =
(
xchas
spr − xchas

)
× Flink (63)

where xchas denotes the position vector of the center of mass CMchas of the body chassis. Similarly, the contributions

to the external resultant force/torque on body rod read:

frcrod = −Flink

trqrod = −
(
xrod
spr − xrod

)
× Flink (64)

In order to transform any constitutive equation of type (61) characterizing an internal link of the multibody system

into external forces/torques (frci, trqi) applied to the involved bodies, we thus require, as functions of the joint

generalized coordinates, the expressions of the position vectors of the two anchor points (in addition to the position

vectors of the center of mass CM i).

The method used above for the spring can also be applied in modeling a constitutive law which depends on the

link velocity (ex. for the suspension damper). Assuming (again) a linear characteristic of the law:

Flink = c Ż (65)

the vector damper link force is given by:

Flink=c Ż

(
xrod
damp − xchas

damp

)
∥ xrod

damp − xchas
damp ∥

(66)

which is easily transformed into external resultant forces/torques (frci, trqi) with formulae similar to (63) and (64).

In addition to the anchor point position vectors, the user now needs, in order to compute Ż, the expressions of the

velocities
.
x
chas
damp and

.
x
rod
damp in terms of the joint coordinates q and velocities q̇.
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B Linearization and Modal analysis for multiphysic models

When the constitutive ODE system (Section 4.7) are taken into account in the modal analysis, the linearization has

to be performed on both the equations of motion and the constitutive ODE, which are denoted Rr (i.e., the residual

form of the equations) and fusr from equation (42). In addition, the linearization has to be performed with respect

to the ODE states ux but also more generally on the independent accelerations q̈u (to take for example inerter terms)

and the state derivatives u̇x.

Jr ∆q̈u + Sr∆u̇x +Gr ∆q̇u +Kr ∆qu + Lr∆ux = 0 (67)

∆u̇x = Jx∆q̈u +Gx∆q̇u +Kx∆qu + Lx∆ux (68)

Note that Mr has been replaced by Jr in the first equation to take into account non-linear force terms that would

depend on joint accelerations (e.g., inerter and J-suspension). Let us define x as follows:

x =

∆qu

∆q̇u

∆ux

 → ẋ =

∆q̇u

∆q̈u

∆u̇x


System (67-68) can be written as: I 0 0

0 Jr Sr

0 Jx I

 ẋ+

 0 −I 0

Kr Gr Lr

Kx Gx Lx

x = 0 (69)

Which can finally be written on the desired form (52) by numerically solving system (69).

ẋ = Ax (70)

Finally, let us note that the cases Jr ̸= Mr, Sr ̸= 0 and Jx ̸= 0 are not often encountered. Generally, the

extra-diagonal terms simply disappear and the A matrix can be computed block by block.

A
∆
= −

I 0 0

0 Mr 0

0 0 I


−1 0 −I 0

Kr Gr Lr

Kx Gx Lx

 =

 0 I 0

−M−1
r Kr −M−1

r Gr −M−1
r Lr

Kx Gx Lx

 (71)
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